
Fast constant-time
gcd computation

and modular inversion

Daniel J. Bernstein

Bo-Yin Yang

Paper coming soon.
Implementations coming soon from larger group.



Normally compute 1/x in Fp as xp−2.

n3+o(1) bit ops using schoolbook multiplication
n2.58...+o(1) bit ops using Karatsuba multiplication
n2+o(1) bit ops using FFT-based multiplication

Why not use extensions of Euclid’s algorithm?

n2+o(1) bit ops using schoolbook multiplication
n1.58...+o(1) bit ops using Karatsuba multiplication
n1+o(1) bit ops using FFT-based multiplication

Usual answer: Need constant-time algorithm.

Our algorithm is constant-time; n1+o(1) bit ops;
simpler than previous variable-time algorithms.
No division subroutine between recursive calls.



Normally compute 1/x in Fp as xp−2.

n3+o(1) bit ops using schoolbook multiplication
n2.58...+o(1) bit ops using Karatsuba multiplication
n2+o(1) bit ops using FFT-based multiplication

Why not use extensions of Euclid’s algorithm?

n2+o(1) bit ops using schoolbook multiplication
n1.58...+o(1) bit ops using Karatsuba multiplication
n1+o(1) bit ops using FFT-based multiplication

Usual answer: Need constant-time algorithm.

Our algorithm is constant-time; n1+o(1) bit ops;
simpler than previous variable-time algorithms.
No division subroutine between recursive calls.



Normally compute 1/x in Fp as xp−2.

n3+o(1) bit ops using schoolbook multiplication
n2.58...+o(1) bit ops using Karatsuba multiplication
n2+o(1) bit ops using FFT-based multiplication

Why not use extensions of Euclid’s algorithm?

n2+o(1) bit ops using schoolbook multiplication
n1.58...+o(1) bit ops using Karatsuba multiplication
n1+o(1) bit ops using FFT-based multiplication

Usual answer: Need constant-time algorithm.

Our algorithm is constant-time; n1+o(1) bit ops;
simpler than previous variable-time algorithms.
No division subroutine between recursive calls.



Normally compute 1/x in Fp as xp−2.

n3+o(1) bit ops using schoolbook multiplication
n2.58...+o(1) bit ops using Karatsuba multiplication
n2+o(1) bit ops using FFT-based multiplication

Why not use extensions of Euclid’s algorithm?

n2+o(1) bit ops using schoolbook multiplication
n1.58...+o(1) bit ops using Karatsuba multiplication
n1+o(1) bit ops using FFT-based multiplication

Usual answer: Need constant-time algorithm.

Our algorithm is constant-time; n1+o(1) bit ops;
simpler than previous variable-time algorithms.
No division subroutine between recursive calls.


